plane icon Welcome to Microsoft Flight Simulator’s SDK Q&A Platform!

You have questions regarding the SDK? DevMode Tools? SimConnect? You would like to submit an idea for future improvements, seek help or exchange knowledge? You’re in the right place.

In the upcoming flighting, we've changed the behaviour of the content.xml file. If your addon uses this file, please read this article!

Please take a moment to read the platform’s guidelines before you get started!


question

donstim avatar image
donstim asked donstim commented

QNH Determination (Relationship between QNH and station pressure)

I hate to bring this back up again after so much work has been done to improve it, but I still see an important issue with it. There appears to be something wrong with the relationship between QNH and the ambient pressure at that location. As an example, I located the airplane at a high elevation airport (SLLP) in La Paz, Bolivia. Using real weather the METAR indicated a QNH of 1037. The altitude simulation variables are shown in the following screenshot:

screenshot-1929.png

As you can see, it gives an ambient pressure at the airport of 635.45 hPa for the QNH of 1037 and airport elevation of 13,313 ft. However, for that elevation and QNH, the ambient pressure should be 627.57 hPa. The MSFS pressure leads to a pressure altitude of 12,355 ft, but it should really be 12,670 ft. A QNH of 1037 should shift the pressure vs altitude curve down by 642.5 ft.

If the ambient pressure is really 635.45 hPa at the field elevation of 13,313 ft, then the QNH should be 1048.8.

My calculations are based on the following equations from the Boeing Jet Transport Performance Methods document (with 1013.25 hPa substituted for 29.92 in Hg as the sea level pressure).

screenshot-1930.png

screenshot-1931.png

This is a stumbling block for us in trying to implement the effect of barometric pressure compensation since what we would be basing it on (the equations above) are different than what MSFS appears to be using.

aircraft
10 |10000

Up to 5 attachments (including images) can be used with a maximum of 4.8 MiB each and 23.8 MiB total.

mattnischan avatar image
mattnischan answered donstim commented
Hi dontsim,


Looking only at the code and then also the ISA document had me in a bit of tunnel vision regarding the formula you provided. I'm not entirely convinced of the exponent value of the Boeing QNH formula, but that aside (and it's a very small difference), you are of course correct. The current sim code is applying the offset in the wrong area (effectively adding the QNH vs STD pressure delta through the whole range, instead of offsetting the SL altitude as you point out) both in the altimeter and in the atmosphere itself. This internal consistency made this error much harder to spot.

We should be able to get that sorted in both locations for SU9, and I have tested this against the provided Boeing formula, my own QNH derivation, and other derivations and calculators available elsewhere. Thanks much for the dialog!

1 comment
10 |10000

Up to 5 attachments (including images) can be used with a maximum of 4.8 MiB each and 23.8 MiB total.

Fantastic! As for the exponent in the Boeing equations, the 5.25588 comes from screenshot-1969.png

where g sub 0 is of course the sea level standard gravitational acceleration, lambda is the temperature lapse rate, and R is the specific gas constant. In English units, g sub 0 is 32.17405 ft/sec squared, lambda is 0.00356616 deg F/R per foot, and R is 1716.5619 foot-pounds per slug-degree R. Of course if coding this, there is no reason to do the multiplication beforehand. You can have the constants defined, and then use the full g sub 0 over lambda times R to avoid the round-off.

In SI units, for g sub 0 = 9.806665 meters per second squared, lambda = 0.0065 deg C/K per meter, and R = 287.0529 Newton-meters per kg mass-degree K, I get 5.25589.

And then, the exponent 0.190263 is just 1/5.25588.

3 Likes 3 ·
mattnischan avatar image
mattnischan answered mattnischan converted comment to answer

Hi there,

The sim uses the NASA Standard ISA Atmosphere 1976 formulae (1976_Std_Atm_NASA-TM-X-74335.pdf ) (also adopted by ICAO) to compute altimetry. Using the tables I see in the official paper on pages 187 and 188 to cross-check the sim formulae, I see 635.45mb corresponding to a pressure altitude of roughly 3766m (~12355.6ft), and 13313ft (~4057.8m) corresponding to an ambient pressure of 611.8mb. The difference between the two pressures is thus 23.65mb, leading to a required QNH of 1013.25 + 23.65, or 1036.9mb. I am also able to validate these numbers using the various ISA standard atmosphere calculators available online.

I cannot seem to validate the Boeing formulae using any ISA standard atmosphere sources I can find, so I'm not totally sure where they are deriving from.

Hope that helps!

-Matt


2 comments
10 |10000

Up to 5 attachments (including images) can be used with a maximum of 4.8 MiB each and 23.8 MiB total.

Hi Matt,

Thank you for responding. I have no qualms with the pressure vs pressure altitude relationship in MSFS (at least since it was cleaned up). I agree that 635.45 mb corresponds to a pressure altitude of about 12355 ft and that 611.8 mb corresponds to a pressure altitude of about 13312 ft. What I fail to see is why you are referencing the 635.45/12355 value. That's not where the airplane (or the station is). You seem to be calculating a QNH correction as simply being a delta p along the pressure vs altitude line whereas it is really a sea level equivalent pressure change that results in the same number of feet difference between the station pressure altitude and the sea level pressure line at the station pressure:

screenshot-1967.png

The pressure altitude can be calculated for any pressure from the equationscreenshot-1968.png

For example, plug in 635.45 mb and you get 12355 ft. For 611.8 mb you get 13312 ft.

In the above example, with a station pressure of 28.35 in Hg (960 mb), the pressure altitude is about 1485 ft. It takes a QNH of 29.40 in Hg (999.6 mb) to achieve that same 485 ft difference between the 1000 ft elevation and the 1485 pressure altitude.

If you are given the QNH, then the difference between the pressure altitude and the elevation can be found by simply inputting QNH as the pressure in the above equation

For the SLLP example I gave then, if the QNH is 1037, then the difference in pressure altitude is -643 ft. That would mean the pressure altitude for the La Paz elevation of 13313 ft is 13313-643 =12670 ft. And the corresponding station pressure for that pressure altitude would be 627.57 mb as I stated above.

Regards,

Don

0 Likes 0 ·
screenshot-1967.png (14.5 KiB)

After looking at this a bit more, I think I see where the issue is. It appears that you are assuming that pressure vs altitude is completely linear through the SLLP elevation of 13313 ft. It is not (as you can glean from the pressure altitude equation I provided). Using your numbers from the 1976 NASA Standard Atmosphere model, for a pressure of 635.45 mb and altitude of 3766 m, a linear variation of pressure with altitude would give about 9.97 m/mb. For a pressure of 611.8 mb and 4057.8m, a linear variation of pressure with altitude would give 10.11 m/mb. These numbers are not equal. They would be if the variation of pressure with altitude was linear. Only if the standard pressure variation is linear with altitude can you use the difference between the pressure at the station elevation and the standard pressure to add to the sea level standard pressure to determine the QNH.


MSFS does not use a linear variation of standard pressure with altitude, so why does it appear to be assuming that to be the case for determining QNH? It might work acceptably well for altitudes close to sea level, but it breaks down for very high altitude airports like La Paz. It really falls apart when examining the effect of changing the baro setting of the altimeter at high altitudes.

Sorry for the continued edits, but I am trying to make things more clear. I changed the title of the question/issue for that reason.

Changing a baro setting in an airplane altimeter shifts the standard pressure vs altitude curve up or down, not sideways.

The equations provided in the Boeing document are easily derived if you need for me to provide that information. They should be relatively straightforward just from inspection.

1 Like 1 ·

Write an Answer

Hint: Notify or tag a user in this post by typing @username.

Up to 5 attachments (including images) can be used with a maximum of 19.1 MiB each and 23.8 MiB total.